STEM Success Center

## Section 4.5: Absolute Maxima and Minima (Absolute Extrema)

Definition: Let c is a value in the domain of a function $f$. If $f(c) \geq f(x)$ for all $x$ in the domain of $f$ then $f(c)$ called the absolute maximum of $f$. If $f(c) \leq f(x)$ for all $x$ in the domain of $f$ then $f(c)$ called the absolute minimum of $f$.

Note: Keep in mind that $c$ is $x$-value, and $f(c)$ is $y$-value at $x=c$.
Procedure: Finding absolute extrema on a closed interval [a, b]

1. Check if $f$ continuous over the $[\mathrm{a}, \mathrm{b}]$.
2. Find the critical numbers on the interval $(a, b)$.
3. Find $f(a), f(b)$, and evaluate $f$ at all critical numbers found in step 2 .
4. The absolute maximum is the largest value found in step 3.
5. The absolute minimum is the smallest value found in step 3.

Example: Find the absolute maximum and absolute minimum of

$$
f(x)=x^{3}+3 x^{2}-9 x-7 \text { on the interval }[-4,2]
$$

1. $\quad f(x)$ is continuous for all values of $x$ since it is a polynomial function. So, it is continuous on $[-4,2]$.
2. $f^{\prime}(x)=3 x^{2}+6 x-9=3(x-1)(x+3)=0$
$x-1=0$ or $x+3=0$, so $\boldsymbol{x}=\mathbf{1}$ or $\boldsymbol{x}=\mathbf{- 3}$ are critical numbers.
3. 

| $x$ | -4 | -3 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 13 | 20 | -12 | -5 |

4. The absolute maximum value is 20
5. The absolute minimum value is -12

## Second Derivative Test for Absolute Extrema on an Interval (If there is exactly ONE critical number).

Let $f$ be continuous on interval $(\mathrm{a}, \mathrm{b})$ with only one critical number c in the interval.
If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then $f(c)$ is the absolute minimum of $f$ on the open interval (a, b).
If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then $f(c)$ is the absolute maximum of $f$ on the open interval $(\mathrm{a}, \mathrm{b})$.

Note: Observe that in the first case, $f^{\prime \prime}(c)$ is positive, thus the function is concave up $\cup$ which gives us minimum value, and in the second case $f$ " $(c)$ is negative, thus the function is concave down $n$ which gives us maximum value.

Example: Find the absolute extrema of the function on ( $0, \infty$ ).

$$
f(x)=x+\frac{4}{x}
$$

$f^{\prime}(x)=1-\frac{4}{x^{2}}=\frac{x^{2}}{x^{2}}-\frac{4}{x^{2}}=\frac{x^{2}-4}{x^{2}}=\frac{(x-2)(x+2)}{x^{2}}=0$
$x-2=0$ or $x+2=0$. So, critical numbers are $x=2$ or $x=-2$. However, $x=-2$ is not in the interval $(0, \infty)$ the only critical number is $x=2$.
$f^{\prime \prime}(x)=\frac{8}{x^{3}}$
$f^{\prime \prime}(2)=\frac{8}{2^{3}}=1>0$. So, since the second derivative is positive, the function is concave up, and the absolute minimum is $f(2)=4$.
$f(2)=2+\frac{4}{2}=4$

